Platelet factor-4 variant chemokine CXCL4L1 inhibits melanoma and lung carcinoma growth and metastasis by preventing angiogenesis.
نویسندگان
چکیده
The platelet factor-4 variant, designated PF-4var/CXCL4L1, is a recently described natural non-allelic gene variant of the CXC chemokine platelet factor-4/CXCL4. PF-4var/CXCL4L1 was cloned, and the purified recombinant protein strongly inhibited angiogenesis. Recombinant PF-4var/CXCL4L1 was angiostatically more active (at nanomolar concentration) than PF-4/CXCL4 in various test systems, including wound-healing and migration assays for microvascular endothelial cells and the rat cornea micropocket assay for angiogenesis. Furthermore, PF-4var/CXCL4L1 more efficiently inhibited tumor growth in animal models of melanoma and lung carcinoma than PF-4/CXCL4 at an equimolar concentration. For B16 melanoma in nude mice, a significant reduction in tumor size and the number of small i.t. blood vessels was obtained with i.t. applied PF-4var/CXCL4L1. For A549 adenocarcinoma in severe combined immunodeficient mice, i.t. PF-4var/CXCL4L1 reduced tumor growth and microvasculature more efficiently than PF-4/CXCL4 and prevented metastasis to various organs better than the angiostatic IFN-inducible protein 10/CXCL10. Finally, in the syngeneic model of Lewis lung carcinoma, PF-4var/CXCL4L1 inhibited tumor growth equally well as monokine induced by IFN-gamma (Mig)/CXCL9, also known to attract effector T lymphocytes. Taken together, PF-4var/CXCL4L1 is a highly potent antitumoral chemokine preventing development and metastasis of various tumors by inhibition of angiogenesis. These data confirm the clinical potential of locally released chemokines in cancer therapy.
منابع مشابه
Preventing Angiogenesis Melanoma and Lung Carcinoma Growth and Metastasis by Platelet Factor-4 Variant Chemokine CXCL4L1 Inhibits
The platelet factor-4 variant, designated PF-4var/CXCL4L1, is a recently described natural non-allelic gene variant of the CXC chemokine platelet factor-4/CXCL4. PF-4var/CXCL4L1 was cloned, and the purified recombinant protein strongly inhibited angiogenesis. Recombinant PF-4var/CXCL4L1 was angiostatically more active (at nanomolar concentration) than PF-4/CXCL4 in various test systems, includi...
متن کاملAngiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3.
We investigated possible cellular receptors for the human CXC chemokine platelet factor-4 variant/CXCL4L1, a potent inhibitor of angiogenesis. We found that CXCL4L1 has lower affinity for heparin and chondroitin sulfate-E than platelet factor-4 (CXCL4) and showed that CXCL10 and CXCL4L1 could displace each other on microvascular endothelial cells. Labeled CXCL4L1 also bound to CXCR3A- and CXCR3...
متن کاملThe COOH-terminal peptide of platelet factor-4 variant (CXCL4L1/PF-4var47-70) strongly inhibits angiogenesis and suppresses B16 melanoma growth in vivo.
Chemokines influence tumor growth directly or indirectly via both angiogenesis and tumor-leukocyte interactions. Platelet factor-4 (CXCL4/PF-4), which is released from alpha-granules of activated platelets, is the first described angiostatic chemokine. Recently, it was found that the variant of CXCL4/PF-4 (CXCL4L1/PF-4var) could exert a more pronounced angiostatic and antitumoral effect than CX...
متن کاملPlatelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis.
Platelet factor-4 (PF-4)/CXCL4 was the first chemokine described to inhibit neovascularization. Here, the product of the nonallelic variant gene of CXCL4, PF-4var1/PF-4alt, designated CXCL4L1, was isolated for the first time from thrombin-stimulated human platelets and purified to homogeneity. Although secreted CXCL4 and CXCL4L1 differ in only three amino acids, CXCL4L1 was more potent in inhib...
متن کاملThe COOH-Terminal Peptide of Platelet Factor-4 Variant (CXCL4L1/PF-4var) Strongly Inhibits Angiogenesis and Suppresses B16 Melanoma Growth In vivo
Authors' 2Laborator Research, Pathology Biotechnolo
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 12 شماره
صفحات -
تاریخ انتشار 2007